

An Energy Sector Roadmap to Carbon Neutrality in China

International Energy Agency

INTERNATIONAL ENERGY AGENCY

The IEA examines the full spectrum of energy issues including oil, gas and coal supply and demand, renewable energy technologies, electricity markets, energy efficiency, access to energy, demand side management and much more. Through its work, the IEA advocates policies that will enhance the reliability, affordability and sustainability of energy in its 30 member countries, 8 association countries and beyond.

Please note that this publication is subject to specific restrictions that limit its use and distribution. The terms and conditions are available online at www.iea.org/t&c/

This publication and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org

IEA member countries:

Australia Austria Belgium Canada Czech Republic Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Japan Korea Luxembourg Mexico Netherlands New Zealand Norway Poland Portugal Slovak Republic Spain Sweden Switzerland Turkey United Kingdom United States

The European Commission also participates in the work of the IEA IEA association countries:

Brazil China India Indonesia Morocco Singapore South Africa Thailand

Abstract

In September 2020, President Xi Jinping announced that the People's Republic of China will "aim to have CO_2 emissions peak before 2030 and achieve carbon neutrality before 2060". Amid the growing wave of governments around the world setting targets for reaching net zero emissions, no pledge is as significant as China's. The country is the world's largest energy consumer and carbon emitter, accounting for one-third of global CO_2 emissions. The pace of China's emissions reductions will be an important factor in global efforts to limit global warming to 1.5 °C.

This report, *An Energy Sector Roadmap to Carbon Neutrality in China*, responds to the Chinese government's invitation to the International Energy Agency to cooperate on long-term strategies by setting out pathways for reaching carbon neutrality in China's energy sector. It shows that achieving carbon neutrality fits with China's broader development goals, such as increasing prosperity and shifting towards innovation-driven growth. The first pathway in this *Roadmap* – the Announced Pledges Scenario – reflects the enhanced targets China announced in 2020. The report also explores the implications of a faster transition – the Accelerated Transition Scenario – and the socio-economic benefits it would bring beyond those associated with reducing the impact of climate change.

This *Roadmap* examines the technology challenges and opportunities that this new phase of the clean energy transition will bring for China's development, with a focus on long-term needs. The technology innovations required in the Chinese context are a key in-depth focus area. The report concludes with a series of policy considerations to inform China's energy debate.

Acknowledgements, contributors and credits

This report was prepared by the Energy Technology Policy Division within the Directorate on Sustainability, Technology and Outlooks of the International Energy Agency. The study was designed and directed by Timur Gül (Head of the Energy Technology Policy Division). The analysis and production was co-ordinated by Araceli Fernández Pales (Head of the Technology Innovation Unit) and Peter Levi.

The main contributors were Thibaut Abergel (buildings, CO₂ emissions decomposition), Praveen Bains (bioenergy, geospatial analysis), Simon Bennett (innovation policy), Niels Berghout (CCUS), Jose Miguel Bermudez Menendez (hydrogen), Cyril Cassisa (climate and energy policy), Xiushan Chen (climate and energy policy), Elizabeth Connelly (transport), Chiara Delmastro (buildings, investment), Alexandre Gouy (industry), Insa Handschuch (climate policy), Zoe Hungerford (electricity system flexibility), Jean-Baptiste Le Marois (innovation policy), Hana Mandová (industry), Rebecca McKimm (China policy), Rachael Moore (CCUS), Leonardo Paoli (transport, batteries), Faidon Papadimoulis (data management), Uwe Remme (energy supply), Alan Searl (China policy), Jacopo Tattini (transport), Jacob Teter (transport), Tiffany Vass (industry, material efficiency) and Daniel Wetzel (electricity, employment).

Other contributors were Adam Baylin-Stern, Ekta Bibra, Daniel Crow, Tomas De Oliveira Bredariol, Zhu Erpu, Carlos Fernández Álvarez, Timothy Goodson, Craig Hart, Taku Hasegawa, Paul Hughes, Luo Huilin, Huang Jingyun, Zhu Linxiao, Li Lishuo, Samantha McCulloch, Jeremy Moorhouse, Pawel Olejarnik, Francesco Pavan, Apostolos Petropoulos, Amalia Pizarro, Ryszard Pospiech, Jacques Warichet, Chengwu Xu, Gong Yuanyuan and Yang Ziyi. Caroline Abettan, Reka Koczka, Diana Louis, Per-Anders Widell and Zhang Yang provided essential support.

The work benefited greatly from the collaboration with and input from several Chinese experts: Da Yan (Tsinghua University), Lin Jin (Tsinghua University), Shan Hu (Tsinghua University), Teng Fei (Tsinghua University), Wan Can (Tsinghua University), Zhang Jian (Tsinghua University), Zhang Qiang (Tsinghua University), Jiang Kejun (Energy Research Institute), Zhou Dadi (Energy Research Institute), Chai Qimin (National Center for Climate Change Strategy and International Cooperation), Dang Yanbao (Ningxia Baofeng Energy Group Co

Ltd), Jiang Liping (State Grid Energy Research Institute), Li Yongliang (China Petroleum and Chemical Industry Federation), Qin Xiao (China Renewable Energy Engineering Institute), Wang Ke (Renmin University of China), Wang Zhixuan (China Electricity Council), Xiong Xiaoping (Development Research Center of the State Council), Zhang Jiutian (Beijing Normal University), Zhang Longqiang (China Metallurgical Information and Standardization Institute), Zhang Xian (Administrative Center for China's Agenda 21, Ministry of Science and Technology), Zhang Ying (Chinese Academy of Social Science) and Yang Lei (Peking University).

Valuable comments and feedback were provided by IEA senior management and other colleagues within the IEA, in particular, Mechthild Wörsdörfer, Laura Cozzi, Tim Gould, Brian Motherway, An Fengquan, Stéphanie Bouckaert, Peter Fraser, Tom Howes, An Fengquan, Christophe McGlade and Sara Moarif and Brent Wanner. Thanks also go to Jon Custer, Astrid Dumond, Tanya Dyhin, Merve Erdem, Grace Gordon, Christopher Gully, Jad Mouawad, Jethro Mullen, Isabelle Nonain-Semelin, Rob Stone, Julie Puech, Clara Vallois, Therese Walsh and Wonjik Yang of the IEA Communications and Digital Office for their help in producing the report.

We would like to extend our gratitude to Energy Foundation China for providing financial support as well as technical input to this work, in particular Zou Ji, Fu Sha, Du Xuan and Yang Zhuoxiang.

The study also benefits from financial support from the funders of the IEA Clean Energy Transitions Programme, in particular l'Agence Française de Développement. The chapter on innovation for carbon neutrality of the study also benefits from the analysis developed with the financial support provided by the European Commission and European Union's Horizon 2020 research and innovation programme funding under grant Agreement No 952363.

Trevor Morgan carried editorial responsibility and Debra Justus and Erin Crum were the copy-editors.

The analysis and findings in this report draw on strategic guidance, insights and data received during several IEA event and experts' consultation meetings: a high-level workshop on the opportunities and challenges to reach carbon neutrality in China was held in April 2021.

Many experts from outside the IEA reviewed the report and provided comments and suggestions of great value. They include:

Aloncle	Hervé	Agence Française de Développement
Ausfelder	Florian	DECHEMA
Cattier	François	EDF
Chen	Xavier	Beijing Energy Club
Da	Zhang	Tsinghua University
Dabo	Guan	Tsinghua University
Fang	Zhang	Tsinghua University
Feng	Wei	Lawrence Berkeley National Laboratory
Gasc	Jeremy	Agence Française de Développement
Hove	Anders	GIZ
Ishwaran	Mallika	Shell
Jinmiao	Xu	Asian Development Bank
Jones	Ayaka	US Department of Energy
Kan	Flora	ICF
Ku	Anthony	NICE America Research, Inc
Lu	Hongyou	Lawrence Berkeley National Laboratory
Melaina	Marc	US Department of Energy
Myllyvirta	Lauri	Centre for Research on Energy and Clean Air
Ning	Wei	Chinese Academy of Sciences, Institute of Rock
		and Soil Mechanics
Philibert	Cédric	Consultant (former IEA)
Ping	Zhong	MOST/ACCA21
Price	Lynn	Lawrence Berkeley National Laboratory
Qi	An	Energy Research Institute
Saheb	Yamina	International Panel on Climate Change
Sandholt	Kaare	China National Renewable Energy Centre
Shiyan	Chang	Tsinghua University
Sol	Aurélie	Agence Française de Développement
Thomas	Wim	Consultant (former Shell)
Tongbo	Sui	Sinoma
Tu	Kevin	Columbia University
van Hulst	Noé	International Partnership for Hydrogen and Fuel
		Cells in the Economy
Voïta	Thibaud	NDC Partnership
Zhong	Frank	World Steel Association, Beijing
Zhou	Nan	Lawrence Berkeley National Laboratory
Zifeng	Lu	Argonne National Laboratory

The individuals and organisations that contributed to this study are not responsible for any opinions or judgements it contains. The views expressed in the study are not necessarily views of the IEA's member countries or of any particular funder or collaborator. All errors and omissions are solely the responsibility of the IEA.

IEA, 2021.

Table of contents

Abstract	
Acknowledgements, contributors and credits	4
Table of contents	
Executive summary	
Chapter 1: Vision of a carbon neutral China	
Economic and social context	
Energy and emissions trends	
Energy and climate policies	
References	
Chapter 2: The energy transition	
A pathway to carbon neutrality	53
CO ₂ emissions	55
Energy trends	61
Environmental co-benefits	
Energy investment	73
References	77
Chapter 3: Sectoral pathways	
Power and heat generation	79
Low-emissions fuel supply	
Industry	
Transport	
Buildings	
References	
Chapter 4: Technology needs for the energy transition	
Introduction	
Electrification	
CCUS	
Hydrogen	
Bioenergy	
References	
Chapter 5: Near-term opportunities for a faster energy transition	201
Opportunities for a faster transition to 2030	
The Accelerated Transition Scenario	
Benefits of a faster transition	
References	

Chapter 6: Innovation for carbon neutrality	226
Clean energy innovation in China	227
China's approach to energy innovation	233
Opportunities to accelerate innovation	
References	
Chapter 7: Policy considerations	265
Towards a comprehensive policy framework	
Policy approach and priorities	
Reducing emissions from existing assets	
Boosting markets for clean technologies	
Building clean energy infrastructure	
Fostering clean energy innovation	
International collaboration	
References	
General annex	297
Abbreviations and acronyms	
Units of measure	

List of figures

Figure 1.1	Economic and development indicators in China and selected countries
Figure 1.2	Total primary energy demand by fuel in China
Figure 1.3	Fossil fuel consumption by sector in China
Figure 1.4	Selected clean energy technologies in China relative to the rest of the world 25
Figure 1.5	Greenhouse gas emissions in China and rest of the world, 2020
Figure 1.6	CO_2 emissions intensity of primary energy demand relative to CO_2 emissions per capita by country/region, 2000 and 202029
Figure 1.7	CO ₂ emissions from existing energy-related infrastructure under typical lifetime assumptions and operating conditions in China
Figure 1.8	Average age of key emissions-intensive assets in China
Figure 1.9	Main climate and energy policy institutions in China
Figure 1.10	Evolution of selected energy and climate policies and key priorities in China 45
Figure 2.1	Energy-related CO ₂ emissions in China by scenario56
Figure 2.2	Energy sector CO_2 emissions by fuel and technology in China in the APS58
Figure 2.3	Energy sector CO_2 emissions reductions by measure in China in the APS
Figure 2.4	Energy sector CO_2 emissions by sector, sub-sector and fuel in China in the APS . 60
Figure 2.5	Primary energy demand in China by fuel and scenario63
Figure 2.6	Final energy demand by fuel and sector in China by scenario
Figure 2.7	Change in final energy demand by fuel and sector in China in the APS, 2020-2060
Figure 2.8	Selected energy efficiency indicators in China in the APS
Figure 2.9	Air pollutant emissions by type and sector in China in the APS
Figure 2.10	Illustration of population-weighted mean $PM_{2.5}$ concentration and fossil fuel share in primary energy demand by selected region in China at carbon neutrality in 206071
Figure 2.11	Annual energy investment by sector and technology area in China in the APS73

IEA, 2021.

Figure 2.12	Average annual energy investment in emerging technologies by technology maturity in China in the APS
Figure 3.1	CO ₂ emissions reductions in power generation in China by driver in the APS79
Figure 3.2	Electricity demand by sector and generation by fuel in China in the APS 80
Figure 3.3	Power generation capacity by type nationally and by region in China in the APS82
Figure 3.4	Fossil fuel capacity and generation by region in the APS
Figure 3.5	Flexible capacity to ensure system adequacy in China in the APS
Figure 3.6	Flexible capacity to ensure system adequacy by type and share of variable renewables in generation in China in the APS
Figure 3.7	Supply of low-emissions fuel by sector and fuel in China in the APS
Figure 3.8	Biofuels production by type and technology in China in the APS
Figure 3.9	Electrolyser capacity and CO ₂ capture from hydrogen production in China in the APS
Figure 3.10	Production costs of hydrogen and hydrogen-derived fuels by technology in China in the APS
Figure 3.11	Industrial CO ₂ emissions and energy consumption in China in the APS 101
Figure 3.12	Global production of major bulk materials and China's share in the APS 102
Figure 3.13	Technology penetration and energy sector CO ₂ emissions reductions by measure and technology maturity in China's chemicals sector in the APS
Figure 3.14	Technology penetration and energy sector CO ₂ emissions reductions by measure and technology maturity in China's steel sector in the APS
Figure 3.15	Clinker production by technology and cement sector CO ₂ emissions reductions by measure and technology maturity in China in the APS
Figure 3.16	Heating and electric motor technology deployment in light industries in China in the APS
Figure 3.17	CO ₂ emissions from transport in China in the APS
Figure 3.18	Modal shares and cumulative CO ₂ emissions reductions by measure and technology maturity in surface passenger transport in China in the APS
Figure 3.19	Freight activity and related CO ₂ emissions by mode in China
Figure 3.20	Total cost of ownership of heavy-duty trucks in China and Europe in the APS 122
Figure 3.21	Share of heavy-duty trucks activity by mode and related CO ₂ emissions reductions by measure and technology maturity in China in the APS
Figure 3.22	Energy consumption and CO ₂ emissions in international shipping in China in the APS
Figure 3.23	Domestic air travel in China and the United States and rail travel in China
Figure 3.24	Share of aviation final energy demand by fuel and related CO ₂ emissions reductions by measure and technology maturity in China in the APS
Figure 3.25	Energy consumption and energy intensity index in buildings in China in the APS 131
Figure 3.26	Direct and indirect CO ₂ emissions in buildings by subsector and buildings consumption by fuel in China in the APS
Figure 3.27	Share of building CO ₂ emissions reductions by maturity category and end use in China in the APS
Figure 3.28	Buildings floor area and final energy intensity index for space heating and cooling in China in the APS
Figure 3.29	Space heating equipment sales by type and average energy efficiency of space heating and cooling equipment sold in China in the APS
Figure 3.30	Schematic of a direct current electricity distribution and management in buildings
Figure 3.31	Average daily solar PV generation in buildings in China in 2060 in the APS 141
Figure 4.1	CO ₂ emissions reductions from electrification by sector in China in the APS 149
Figure 4.2	Growth in electricity consumption in China by sector and scenario, 2020-2060 152
Figure 4.3	$\label{eq:Cumulative CO2} Cumulative CO_2 emissions avoided by selected electricity technologies by maturity category in China in the APS, 2020-2060 154$

IEA, 2021.

Figure 4.4	EV battery demand and average unit CAPEX155
Figure 4.5	Heat pump installed capacity and average unit CAPEX in the APS158
Figure 4.6	Demand for selected critical metals for EVs in China in the APS160
Figure 4.7	CCUS deployment by sector and source of emissions in China in the APS 162
Figure 4.8	Global CCUS deployment by sector in the APS
Figure 4.9	Cumulative CO ₂ emissions avoided in selected CCUS applications by maturity in China in the APS 2020-60
Figure 4 10	Map of CO_2 sources and potential geological storage in Chipa
Figure 4.10	172
Figure 4.11	Hydrogen production by route and bydrogen demand by sector in China in the APS
Figure 4.12	- 176
Figure 4.13	Existing oil refineries, ammonia and methanol plants, cost of renewables-based hydrogen production and potential CO ₂ storage sites in China
Figure 4.14	Cumulative CO ₂ emissions avoided for selected low-carbon hydrogen technologies by maturity in China in the APS
Figure 4.15	Global electrolyser capacity for dedicated hydrogen production and average unit
Figure 4 16	Clabel demand for fuel cells for transport and everage unit conital costs in the APS
Figure 4.16	Global demand for fuel cells for transport and average unit capital costs in the APS
Figure 4.17	Cumulative CO ₂ emissions reductions from bioenergy use by sector in China in the APS
Figure 4.18	Primary bioenergy demand and share in total energy demand by sector in China in the APS
Figure 4.19	Cumulative CO ₂ emissions avoided from selected bioenergy technologies by technology readiness in China in the APS, 2020-2060
Figure 5.1	Annual change in energy-related CO ₂ emissions in China, APS and ATS
Figure 5.2	Change in energy sector CO ₂ emissions by sector and primary energy use in China in 2030 in the ATS relative to the APS
Figure 5.3	Total coal consumption in 2030 by scenario/case and coal-fired power generation in China in the APS and ATS
Figure 5.4	Indicators of the deployment of selected clean energy technologies in China in 2030 209
Figure 5.5	Annual average change in energy intensity in industry and bulk materials production in China
Figure 5.6	Fuel use by transport mode in China in the APS and ATS in 2030
Figure 5.7	Zero-carbon-ready residential building retrofits and new construction in China 214
Figure 5.8	Global manufacturing capacity of selected clean energy technologies 216
Figure 5.9	Indicators of the deployment of selected innovative clean energy technologies in
rigure 0.0	China in the APS and the ATS. 2030
Figure 5.10	Energy-related employment in China
Figure 5.11	Additional workers needing clean energy skills or training in the APS and ATS, 2019-2030 221
Figure 5.12	Average annual growth rate of primary energy intensity and share of non-fossil fuels in primary energy demand for the energy sector to achieve net zero CO ₂ emissions by 2050 in China
Figure 6.1	CO ₂ emissions reductions by current technology maturity category in China in the APS
Figure 6.2	China's share of global public spending on low-carbon energy R&D, venture capital and patenting
Figure 6.3	SOE ownership share of power generation capacity in G20 countries
Figure 6.4	China's role in international clean energy technology co-patenting
Figure 6.5	Low-carbon energy technology types manned according to their general ettributes
i igule 0.5	of size and modularity versus barriers to market entry

Figure 7.1	Policy priorities for China's net zero emissions strategy by technology maturity level
Figure 7.2	Energy sector CO ₂ emissions from existing infrastructure by sector assuming typical lifetimes in China in the APS
Figure 7.3	Cumulative investment in selected energy infrastructure in China in the APS 288

List of boxes

Box 1.1	Paris Agreement and net zero emissions	38
Box 1.2	Corporate net zero targets in China	41
Box 2.1	Modelling approach	55
Box 2.2	How does China's expected emissions peak compare with other countries	? 56
Box 2.3	Bringing down fossil methane emissions in China	71
Box 3.1	Electricity system flexibility requirements	85
Box 3.2	Implications of lower biofuels supply due to a lack of sustainable biomass .	
Box 3.3	How public transport investments reduce reliance on private cars and dom flights in China	estic 117
Box 3.4	Shenzhen's Future Complex DC building demonstration project	142
Box 4.1	Electricity system targets and policies	149
Box 4.2	EV battery manufacturing in China	156
Box 4.3	CCUS deployment targets and policies	161
Box 4.4	China's role in global hydrogen value chains	182
Box 4.5	Regional hydrogen FCEV strategies in China	185
Box 4.6	Bioenergy deployment targets and policies	191
Box 5.1	The impact of a faster energy transition on fossil methane emissions	207
Box 6.1	Bounty system	231
Box 6.2	Coal conversion: example of large-scale, centrally co-ordinated technology	/
	innovation	235
Box 6.3	Nuclear technology development by SOEs	239
Box 6.4	Hydrogen technology development at the sub-national level	
Box 6.5	Turbo-charging China's EV technologies by boosting demand	
Box 6.6	China's transformation from a solar PV technology importer to innovator	251
Box 7.1	Unlocking emissions in China's heavy industry sectors	273
Box 7.2	China's electricity market reforms	

List of tables

Table 1.1	Selected economic and energy indicators for China	21
Table 1.2	Recent Five-Year Plan targets and attainment	47
Table 3.1	Key projects targeting emissions reductions in heavy industry in China	105
Table 3.1	Key projects targeting emissions reductions in heavy industry in China	105
Table 4.1	Potential CO ₂ storage hubs in China	171
Table 4.2	CO2 trunk line deployment strategies towards 2060	174
Table 5.1	Average performance of selected end-use indicators in China	210
Table 5.2	Cumulative additions of selected carbon-intensive energy assets in China in the APS and ATS, 2021-2030	222
Table 6.1	Technology development and key energy innovation priorities outlined in China's recent five-year plans	s 229
Table 6.2	Low-carbon energy technology groups relative to possible innovation policy approaches that build on China's innovation strengths	256

Executive summary

There is no plausible path to limiting the global temperature rise to 1.5 °C without China¹. In September 2020, President Xi Jinping announced that China will "aim to have CO₂ emissions peak before 2030 and achieve carbon neutrality before 2060". Announced 40 years after the country began its remarkable journey towards economic modernisation, this new vision for China's future comes amid growing convergence among the world's major economies on the need to reach net zero emissions globally by mid-century. But no pledge is as significant as China's: the country is the world's largest energy consumer and carbon emitter, accounting for one-third of global CO₂ emissions. The pace of China's emissions reductions over the coming decades will be important in determining whether the world succeeds in preventing global warming from exceeding 1.5 °C.

The energy sector is the source of almost 90% of China's greenhouse gas emissions, so energy policies must drive the transition to carbon neutrality. This Roadmap responds to the Chinese government's invitation to the IEA to cooperate on long-term strategies by setting out pathways for reaching carbon neutrality in China's energy sector. It also shows that achieving carbon neutrality fits with China's broader development goals, such as increasing prosperity, strengthening technology leadership and shifting towards innovation-driven growth. The first pathway in this Roadmap – the Announced Pledges Scenario (APS) – reflects China's enhanced targets that it declared in 2020 in which emissions of CO_2 reach a peak before 2030 and net zero by 2060. The Roadmap also explores the opportunities for an even faster transition and the socio-economic benefits it would bring to China beyond those associated with reducing the impact of climate change: the Accelerated Transition Scenario (ATS).

China can build on its current clean energy momentum

China's energy sector reflects decades of efforts to lift hundreds of millions of people out of poverty while pursuing other energy policy goals. Energy consumption has doubled since 2005, but the energy intensity of gross domestic product (GDP) has decreased significantly in the same period. Coal accounts for over 60% of power generation – and new coal power plants continue to be built – but solar photovoltaics (PV) capacity additions have outpaced those of any other country. China is the second largest oil consumer in the world, but also home to 70% of global manufacturing capacity for electric vehicle batteries, with Jiangsu province alone accounting for one-third of the country's capacity. China's

¹ The People's Republic of China (hereinafter, "China")

该文档为预览版,仅保留部分内容, 下载完整版报告请关注公众号或添加研究员微信

亚洲油气决策者俱乐部

聚焦国内外行业信息的领先海洋油气媒体 公众号定期分享优质报告 在推送发布一个月内可免费下载

扫码添加研究员微信

添加好友后发送名片并备注想要获取具体某 一份报告的名称,即可领取完整版报告